

## WALL MOUNT AIR CONDITIONER PRODUCT DATA SHEET

# 11+ EER 2-5 Ton Vertical Packaged Wall Mount Air Conditioners with Gas Heat

Models: HAH1024A, HAH1030A, HAH1036A, HAH1042A, HAH1048A, HAH1060A

## **GENERAL DESCRIPTION**

The Eubank HAH series of wall mounted air conditioner with gas heat are designed for use on a variety of applications including modular classrooms, relocatable offices and a multitude a permanent buildings. The HAH series is manufactured in two cabinets with nominal cooling capacities of 2, 2-1/2, 3, 3-1/2, 4 and 5 tons and input heating capacities of 45,000; 67,500; 75,000; 90,000 and 100,000 and 125,000 BTUHs. Eubank HAH units are available with a number of factory and field installed options and accessories which permit the user to optimize the unit for specific applications.

### SAFETY LISTED & ENERGY CERTIFIED

All Eubank air conditioners conform to UL/CSA standard 60335-1 and 60335-2-40 and CAN/CSA C22.2, No. 236-11. The units are listed by ETL and tested to the American National Standard/CSA Standard for Gas Fired Central Furnaces; ANSI Z 21.47 -2006/CSA 2.30-2006. For energy efficiency and performance, the units are tested and rated in accordance to the ANSI/AHRI (Air-Conditioning Heating and Refrigeration Institute) Standard 390 (Single Package Vertical Units). All HAH units meet or exceed the efficiency requirements of ANSI/ASHRAE/IESNA 90.1.2007.

Eubank HAH air conditioners are commercial units and are not intended for use in residential applications.

## **S**TANDARD **F**EATURES

- Ease of Installation
  - Built-in mounting flanges eliminate need for side brackets
  - Sloped top sheds water, minimizes chance of water leaks and eliminates the need for a rainhood
  - Top flashing piece and bottom mounting bracket provided on all units
  - Electrical knockouts on back and side
  - Gas connection on the right side
  - Power disconnect

- Economical Gas Heat
  - Factory set up for natural gas with easy conversion in field to propane
  - Natural gas high altitude pressure switch kit allows operation in sites from 6,000 to 10,000 ft. (1,830 m to 3,050 m)
  - Propane high altitude pressure switch kit allows operation in sites from 6,000 to 10,000 ft. (1,830 m to 3,050 m)
  - Vertical vent pipe kits



HAH1030A



## **Features and Benefits**

#### **Economical Gas Heat**

- Easy to Set Up for Natural Gas or Propane
- High Altitude Pressure Switch Kit Allows Operation from 6,000 to 10,000 ft. (1,830 to 3,050 meters) Using Propane or Natural Gas
- Optional Vertical Vent Pipe Kits

#### Next Generation R-454B Refrigerant

- 78% Lower GWP than R-410A
- Non-Ozone Depleting Refrigerant
- Synthetic Lubricant
- Reduced Compressor Wear

#### Patented Technology

- Tubular Heat Exchanger with Integral Formed Dimple Turbolator
- Clean and Quiet "Inshot" Stainless Steel Gas Burners

#### Ease of Installation and Service

- Easily Accessible Electrical Box and Compressor
  - Built-In Mounting Flanges and Internal Disconnect
  - Standard Access Valves and Filters, Status LEDs

## **S**TANDARD FEATURES (CONTINUED)

- **Ease of Service** 
  - Compressor and electrical box are easily accessible
  - Refrigerant access values allow quick check of refrigerant pressures
  - Easily accessible filter
  - LED identifies operating status and simplifies service by flashing fault code in heating mode
  - Copper tube, aluminum fin evaporator and condenser coils
- Protection of Refrigeration System Components
  - High pressure switch and low pressure sensor with lockout protects refrigerant circuit.
  - Compressor time delay
- > Designed for Operation on Generator Power
  - All Eubank single & three phase air conditioners are designed to operate on Generator Power. See *Summary Electrical Ratings* for your specific model
- **>** Low Ambient Operation in Cooling Mode.
  - Condenser fan cycles allowing cooling to 20°F (-7°C)

- Patented Tubular Heat Exchanger with Integral Formed Dimple Turbulator
  - Enhanced heat transfer for optimum efficiency
  - Quiet eliminates noise caused by expansion and contraction of internal baffles
- Patented Inshot Gas Burners
  - Quiet, clean burning gas inshot burners fire in a direct line with the orifice and the tube
  - Unique carryover design (cross lighting from one burner to another) for immediate lighting
  - Stainless steel burner
- Direct Spark Ignition Control System with LED Flash Fault Indicator
  - Thirty second purge of heat exchanger prior to ignition
  - Three ignition trials before lockout
  - Sixty second post purge at end of operating cycle prevents nuisance trips of rollout switch
  - One hour automatic reset after lockout eliminates need to manually recycle on lockout
  - LED identifies operating status and simplifies service by flashing fault code

## **OPTIONS FOR OUTSIDE AIR VENTILATION**

ASHRAE standard 62 requires 30 cfm of outside air per occupant of a classroom. To meet this requirement, Eubank offers six ventilation packages for every budget and requirement.

### > Configuration "C": Up to 100% Modulating Economizer

The economizer reduces the cost of air conditioning by using outside air when acceptable to cool the room (Free Cooling). The factory installed Eubank<sup>®</sup> economizer has integral pressure relief.

Control Board Logic: Upon a "Call for Cooling", the economizer control board calculates whether the HVAC operates in economizer mode or mechanical cooling mode based on outdoor temperature (dry bulb) or temperature/humidity (enthalpy). When outdoor conditions are favorable for economizer cooling , the damper drives open and modulates to maintain a 55°F mixed air temperature through the supply grille. When outdoor conditions are not favorable for economizer cooling, the economizer damper remains closed, and the HVAC unit will operate in mechanical cooling mode.

### Features Designed for Telecommunication applications:

Hydrogen Fault Input: When 24VAC is applied to the H\_FLT input, the economizer board forces the damper to open 100% for emergency ventilation. The compressor does not operate during Hydrogen Fault/Emergency Ventilation. Thermostat must provide the fan "G" signal to HVAC to activate the indoor blower.

*Forced Mechanical Cooling:* When 24VAC is applied to the FC input of the economizer board, the economizer damper is forced closed, and the HVAC will operate in mechanical cooling mode. This is considered as economizer override in the event economizer cooling is not sufficient for the heat load. Thermostat must provide the fan "G" signal to HVAC to activate the indoor blower.

*Economizer Status:* The economizer board has contacts that when used with the Marvair CommStat 4 Telecom HVAC Controller, change state to provide feedback to the CommStat 4 to indicate when the HVAC is in economizer mode verses mechanical cooling mode. This feedback allows the CommStat 4 to initiate the forced cooling feature to override economizer cooling and force mechanical cooling.

When used with minimum position potentiometer (optional), the Eubank<sup>®</sup> economizer can meet requirements of ASHRAE Std. 62.

### > Configuration "D": Two-Position Motorized Fresh Air Damper w/Pressure Relief Ventilation

*Control Board Logic:* The 92589 control board allows the position of the "D" damper to be set for desired outside air intake from fully closed to fully open. Setting 15 of the control board configuration menu allows the user to set the position from 20 (2VDC / Closed) to 100 (10VDC 100% open). The damper position can be adjusted in 1VDC increments to any position from closed to 100% open as required.

*Operation:* Anytime the indoor blower operates, the damper drives open to the position selected in the control board configuration menu setting 15. When the indoor blower stops operation the motorized damper spring returns to the fully closed position.

*Note:* This circuit does not interrupt the compressor or heater operation.

#### > Configuration "E": Two-Position Motorized Fresh Air Damper w/Pressure Relief Ventilation & Independent Control

*Control Board/Factory Installed Relay Logic:* The 92589 control board allows the position of the "E" damper to be set for desired outside air intake from fully closed to fully open. Setting 15 of the control board configuration menu allows the user to set the position from 20 (2VDC / Closed) to 100 (10VDC 100% open). The damper position can be adjusted in 1VDC increments to any position from closed to 100% open as required.

*Operation:* Upon a "Call for Motorized damper" via a 24V signal from an external user-installed device, the motorized damper opens to the position selected in the control board configuration menu setting 15 and the indoor blower operates. A 24VAC signal {sourced from LVTB 24VAC "R" and supplied through a user-provided Normally Open (NO) contact} activates (opens) the Motorized Damper and connected Relief Damper. When the 24VAC signal is removed, the motorized damper spring returns to the fully closed position and the indoor blower stops operation. The motorized damper Does NOT open when there is a call for the indoor fan (G).

Note: This circuit does not interrupt the compressor or heater operation.

#### > Configuration "H": GreenWheel<sup>®</sup> ERV Energy Recovery Ventilator (Optional)

Allows independent control of the exhaust and intake blowers. When used, the standard speed controller operates the intake blower and the optional second controller, the exhaust blower. Individual blower control allows positive pressurization of a classroom or other space. Field or factory installed.

The Eubank GreenWheel<sup>®</sup> ERV is a total energy (both sensible and latent) wheel that reduces both construction and operating cost while ventilating the classroom to ASHRAE 62-1999 requirements. The use of the GreenWheel ERV reduces the energy load of the outside air. Exhausting stale, inside air keeps indoor pollutants and harmful gases to a minimum. The Eubank GreenWheel ERV has been tested and certified according to ARI Standard 1060.

*How It Works* - During the summer, cool dry air from the space is exhausted through the GreenWheel ERV to the outside. As the air passes through the rotating wheel, the desiccant becomes cooler and drier. Simultaneously, hot humid air is being pulled across the rotating wheel. The cool, dry desiccant absorbs moisture and heat from the incoming air. The cooler, drier air is mixed with the return air from the space and distributed throughout the room.

In the winter, warm moist air is exhausted through the GreenWheel ERV to the outside. As the air passes through the rotating wheel, the desiccant becomes warmer and absorbs moisture. Simultaneously, cold dry air is being pulled across the rotating wheel. The cold, dry air absorbs heat and moisture from the desiccant. The warmed air is mixed with the return air from the space and distributed throughout the room.



**Quality Components** - The GreenWheel ERV Ventilation package consists of the GreenWheel cassette, an incoming air blower, an exhaust air blower, an air filter for the incoming air and one fan speed controller that controls the speed of both blower motors simultaneously. As an option, a second fan speed controller can be factory installed for independent control of the exhaust air motor and positive pressurization of the classroom or other space. Also, an optional filter on the exhaust air is available on selected models. Please consult your Eubank representative for details. The two blowers simultaneously pull fresh air from outside and exhaust air from the space through the rotating wheel. The air streams are separated by an insulated partition so that the incoming fresh air is not mixed with the exhaust air. Two variable speed blowers ensure that up to 450 CFM of outside air can be brought into the room and the indoor air is properly exhausted. Variable speed blowers permit that the desired quantity of outside air is delivered into the space. Optional independent exhaust air blower control allows positive pressurization of the space, i.e., more outside air can be introduced through the GreenWheel ERV than is exhausted.



#### GreenWheel<sup>®</sup> Energy Recovery Ventilator Performance

|                      |               | Energy Conserved, BTUH |                 |               |                                              |        |  |  |  |  |  |  |  |  |
|----------------------|---------------|------------------------|-----------------|---------------|----------------------------------------------|--------|--|--|--|--|--|--|--|--|
| SCFM* of Outside Air | 95° DB/73° WB | Outside • 80° DE       | 3/67° WB Inside | 95° DB/80° WB | 95° DB/80° WB Outside • 80° DB/67° WB Inside |        |  |  |  |  |  |  |  |  |
|                      | Sensible      | Latent                 | Total           | Sensible      | Latent                                       | Total  |  |  |  |  |  |  |  |  |
| 225                  | 2,900         | 1,100                  | 4,000           | 2,900         | 6,400                                        | 9,300  |  |  |  |  |  |  |  |  |
| 250                  | 3,100         | 1,200                  | 4,300           | 3,100         | 6,900                                        | 10,000 |  |  |  |  |  |  |  |  |
| 325                  | 3,700         | 1,400                  | 5,100           | 3,700         | 8,100                                        | 11,800 |  |  |  |  |  |  |  |  |
| 400                  | 4,200         | 1,500                  | 5,700           | 4,200         | 9,100                                        | 13,300 |  |  |  |  |  |  |  |  |
| 450                  | 4,500         | 1,600                  | 6,100           | 4,500         | 9,700                                        | 14,200 |  |  |  |  |  |  |  |  |

|                      |               | Energy Conserved, BTUH |                 |               |                  |                 |                                              |        |       |  |  |  |  |  |  |  |
|----------------------|---------------|------------------------|-----------------|---------------|------------------|-----------------|----------------------------------------------|--------|-------|--|--|--|--|--|--|--|
| SCFM* of Outside Air | 90° DB/74° WB | Outside • 75° DE       | 3/64° WB Inside | 80° DB/70° WB | Outside • 75° DE | 3/64° WB Inside | 60° DB/54° WB Outside • 70° DB/58° WB Inside |        |       |  |  |  |  |  |  |  |
|                      | Sensible      | Latent                 | Total           | Sensible      | Latent           | Total           | Sensible                                     | Latent | Total |  |  |  |  |  |  |  |
| 225                  | 2800          | 3600                   | 6400            | 900           | 2800             | 2700            | 1900                                         | 200    | 2100  |  |  |  |  |  |  |  |
| 250                  | 3000          | 3800                   | 6800            | 1000          | 3000             | 4000            | 2000                                         | 200    | 2200  |  |  |  |  |  |  |  |
| 325                  | 3600          | 4500                   | 8100            | 1200          | 3500             | 4700            | 2400                                         | 200    | 2600  |  |  |  |  |  |  |  |
| 400                  | 4100          | 4900                   | 9000            | 1400          | 3800             | 5200            | 2700                                         | 300    | 3000  |  |  |  |  |  |  |  |
| 450                  | 4300          | 5200                   | 9500            | 1400          | 4000             | 5400            | 2900                                         | 300    | 3200  |  |  |  |  |  |  |  |

|                      |                 | Energy Conserved, BTUH |                |               |                  |                 |                                            |        |       |  |  |  |  |  |  |  |
|----------------------|-----------------|------------------------|----------------|---------------|------------------|-----------------|--------------------------------------------|--------|-------|--|--|--|--|--|--|--|
| SCFM* of Outside Air | 40° DB/36° WB   | Outside • 70° DE       | /58° WB Inside | 20° DB/18° WB | Outside • 70° DE | 3/58° WB Inside | 0° DB/7° WB Outside • 70° DB/58° WB Inside |        |       |  |  |  |  |  |  |  |
|                      | Sensible        | Latent                 | Total          | Sensible      | Latent           | Total           | Sensible                                   | Latent | Total |  |  |  |  |  |  |  |
| 225                  | 5600            | 3300                   | 8900           | 9300          | 4900             | 14200           | 13000                                      | 5700   | 18700 |  |  |  |  |  |  |  |
| 250                  | 6000            | 3600                   | 9600           | 10000         | 5300             | 15300           | 14000                                      | 6100   | 14100 |  |  |  |  |  |  |  |
| 325                  | 7200            | 4200                   | 11400          | 12000         | 6200             | 18200           | 16700                                      | 7100   | 23800 |  |  |  |  |  |  |  |
| 400                  | 8100            | 4600                   | 12700          | 13500         | 6800             | 20300           | 18900                                      | 7900   | 26800 |  |  |  |  |  |  |  |
| 450                  | 8600            | 4800                   | 13400          | 14400         | 7100             | 21500           | 20100                                      | 8200   | 28300 |  |  |  |  |  |  |  |
| *SCEM = Stondard C   | ibio East por M | liputo                 |                |               |                  |                 |                                            |        |       |  |  |  |  |  |  |  |

\*SCFM = Standard Cubic Feet per Minute

For performance of the GreenWheel® ERV at conditions other than those shown, please contact your Eubank® representative or the factory.

For performance of the GreenWheel ERV at conditions other than those shown, please contact your Eubank<sup>®</sup> representative or the factory.

### **O**PTIONS

Eubank air conditioners were designed and are built to stringent requirements of the communications/electronic shelter. Applications occur that have special requirements. Numerous options are available to meet these special needs.

#### ► Hard Start Kit

Used on single phase equipment to give the compressor higher starting torque under low voltage conditions.

#### Protective Coating Packages

**Coated Coils:** Either the condenser or evaporator coil can be coated. For harsh conditions, e.g., power plants, paper mills or sites were the unit will be exposed to salt water, the coils should be coated. *Note:* Cooling capacity may be reduced by up to 5% on units with coated coils.

Coastal Environmental Package: This package includes:

- Corrosion resistant fasteners,
- Sealed or partially sealed condenser fan motor,
- Insitu coating applied to all exposed internal copper and metal in the in the condenser section, and
- A protective coating on the condenser coil.

**All Coat Package:** Includes the same features as the Coastal Environmental Package and adds an impregnated polyurethane on the evaporator coil and the Insitu coating on all exterior and interior components and sheet metal.

Note 1: The insulated internal sheet metal and the internal control box are not coated.

*Note 2:* The corrosion prevention coating can not be applied to stainless steel.

### > Protective Coil Coatings

The Condenser Coil or the Evaporator Coil or Both can be coated. Coating the Evaporator Coil in not common. For harsh conditions, e.g., power plants, paper mills or sites where the unit will be exposed to salt water, the coils should be protected by a protective coating. *Note:* Cooling capacity may be reduced by up to 5% on units with coated coils.

### ► Natural Gas to Propane Conversion Kit

Eubank HAH air conditioners are factory configured for natural gas. This kit is required for use with propane. Propane Conversion Kit for HAH with 45,000, 67,500 & 90,000 BTUH Heat Capacity......01561

### ► High Filtration

Selected units are built with larger blowers/motors for use with higher efficiency filters with MERV ratings of 11, 13 and 14 when tested to ASHRAE 52.2. Units with economizers have a prefilter on the outside air. Contact your Eubank representative for specific models.

### ► Cabinet Color

Eubank air conditioners are available in six different cabinet colors. The standard colors are Marvair<sup>®</sup> beige, white, gray and Carlsbad Canyon (brown). The standard cabinet's sides, top and front panels are constructed of 20 gauge painted steel. Contact your Eubank representative for color chips. Custom colors are also available; contact Eubank for details.

Two stainless steel cabinet constructions are available:

**Stainless Steel Exterior (Option "5"):** This option replaces all standard exterior painted surfaces with stainless steel. This option also replaces the standard unpainted compressor base of the unit and exterior cabinet screws with stainless steel. No other standard construction surfaces are stainless steel in this option, unless listed in this description. Back panel is not stainless steel with this option. This option is designed to give a more economical alternative to full stainless steel, and still offer an enhanced level of protection. For further corrosion protection, please see our "A" offering at full stainless on all metal components.

**Stainless Steel Unit (Option "A"):** This option replaces all interior and exterior steel sheet metal parts with stainless steel. All galvanized and painted steel surfaces found in the standard unit are stainless steel with this option. All cabinet screws are stainless steel. No other standard construction surfaces are stainless steel, unless listed in this description. This option is designed to give our most robust protection against steel corrosion.

#### ► Extended Warranty

A first-year labor (Silver), and a two-year labor (Gold) are available. See *www.EubankWallMount.com* for optional warranty details.

#### **>** Dirty Filter Indicator

A factory installed option that measures the difference in pressure across the internal filter and illuminates a LED when the pressure exceeds the desired difference.

### Compressor Sound Jacket

To reduce sound of compressor.

Lockable Disconnect Access Cover Plate The access plate to the service disconnect

The access plate to the service disconnect switch can be equipped with a lockable cover.

#### ► Washable Filter

Spun aluminum construction allows cleaning of filters with water.

Compressor Locations

Most HAH air conditioners can be built with the compressor on the opposite side to facilitate service access when two units are installed side by side.

### HOT GAS REHEAT OPERATION

Eubank<sup>®</sup> units equipped with Hot Gas Reheat (HGR) allow the indoor humidity of the controlled environment to be maintained at or below a certain humidity set point. These units do not have the ability to add humidity to the classroom. Dehumidification is achieved by operating mechanical cooling in conjunction with a hot gas reheat coil. Hot Gas Reheat is only available with units with the "B" or "H" ventilation option.

**Operation** - If the humidity rises above the set point on the humidity controller and the temperature in the classroom is satisfied, both mechanical cooling and the HGR coil operate to temper the air and lower the humidity. If the temperature in the classroom rises above (or falls below) the set point of the thermostat and the unit is operating in the dehumidification mode, the call for cooling (or heating) will override the call for dehumidification and the coil is disengaged until the thermostat is satisfied. This assures the environment temperature is maintained as first priority and humidity control is second.

### Accessories

### Grilles for the HAH1024A-1030A-1036A

| Supply Grille: 28" x 8"          | P/N 80675 |
|----------------------------------|-----------|
| Return Grille: 28" x 14"         | P/N 80678 |
| Return Filter Grille:* 28" x 14" | P/N 80672 |

### ► Grilles for the HAH1042A-1048A-1060A

| Supply Grille: 30" x 10"        | P/N 80676 |
|---------------------------------|-----------|
| Return Grille: 30" x 16"        | P/N 80679 |
| Return Filter Grille:*30" x 16" | P/N 80673 |

## **ROOM SIZE LIMITATIONS**

|                                      | HAH1024A | HAH1030A | HAH1036A | HAH1042A | HAH1048A | HAH1060A |
|--------------------------------------|----------|----------|----------|----------|----------|----------|
| Refrigerant Charge (oz.)             | 100      | 105      | 120      | 125      | 125      | 125      |
| Minimum Room Size (ft <sup>2</sup> ) | 98.2     | 103.1    | 117.8    | 122.7    | 122.7    | 122.7    |
| Minimum Supply Height (ft)           | 6.9      | 6.9      | 6.9      | 6.9      | 6.9      | 6.9      |

### **MODEL IDENTIFICATION**

| Exa              | ampl       | le             | H A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н      | 1       | 0  | 3                 | 6                                                                               | Α                                | Α                          | 0                    | 9      | 0       | С     | G    | +                | +                                                                                                                                          | +                       | 1                      | D     | Α     | +    | Α                                                                                                     | 1                              | 1                                                        | +                          | +              | +                          | +                       | +       | +     |      |  |  |      |  |
|------------------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|----|-------------------|---------------------------------------------------------------------------------|----------------------------------|----------------------------|----------------------|--------|---------|-------|------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|-------|-------|------|-------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------|----------------------------|----------------|----------------------------|-------------------------|---------|-------|------|--|--|------|--|
| Pos              | sitior     | n              | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3      | 4       | 5  | 6                 | 7                                                                               | 8                                | 9                          | 10                   | 11     | 12      | 13    | 14   | 15               | 16                                                                                                                                         | 17                      | 18                     | 19    | 20    | 21   | 1 22 23 24 25 26 27 28 29                                                                             |                                |                                                          |                            |                |                            | 29                      | 30      |       |      |  |  |      |  |
| 1<br>2<br>3<br>4 | Ene<br>Ref | ergy<br>frige  | esignation<br>Efficient<br>erant Typerson Typ | ncy Ra | atio (I | ,  | A =<br>H =        | Euba<br>11<br>R-45<br>Singl                                                     | 4B                               | /all M                     | ount                 | w/Ga   | is He   | at    |      |                  | 17     Indoor Air Quality<br>Features     D = Dry Bulb Sensor<br>E = Dry Bulb Sensor w/Dirty Filter<br>G = Dirty Filter Sensor<br>+ = None |                         |                        |       |       |      |                                                                                                       |                                |                                                          |                            |                |                            |                         |         |       |      |  |  |      |  |
| 5<br>6<br>7      | Uni        | it Ca          | apacity/l<br>g (BTUH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nomir  |         | .y | 024<br>030        | = 24<br>= 30<br>= 36                                                            | 4,000<br>),000                   | 0                          | 42 =<br>48 =<br>60 = | 48,00  | 00      |       |      |                  | 18<br>19                                                                                                                                   |                         | Flow<br>npres<br>ation | sor   |       | E    | ) = Le<br>E = Ri                                                                                      | eft Haght I                    | Hand                                                     |                            |                |                            |                         |         |       |      |  |  |      |  |
| 8                | Po         | wer            | n Type<br>Supply<br>Hz-Phas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | se)    |         |    | A =<br>C =        | Air C<br>208/<br>208/<br>460-                                                   | 230-6<br>230-6                   | 50-1                       |                      |        |         |       |      |                  | 20                                                                                                                                         | Filte                   | er Opt                 | tion  |       |      | <b>C</b> = 2"<br><b>D</b> = M<br><b>E</b> = M<br><b>E</b> = Fil                                       | Cha<br>ERV<br>ERV<br>ter A     | ated (l<br>arcoal<br>/ 11 H<br>/ 13 H<br>Access<br>num ' | igh Fi<br>igh Fi<br>s Thro | Itrat<br>Itrat | ion Pa<br>ion Pa<br>n Retu | ackag                   | е       | :     |      |  |  |      |  |
| 10<br>11<br>12   | Hea        | at D           | esignat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ion    |         |    | 067<br>075        | = 45<br>= 67<br>= 75                                                            | ,500<br>5,000                    | BTU<br>BTU                 | H 10                 | 0 = 1  | 00,00   | 00 BT | UΗ   |                  |                                                                                                                                            |                         |                        |       |       | +    | + = None   A = Condenser Coil Only   C = Evaporator Coil Only   D = Both Coils Condenser & Evaporator |                                |                                                          |                            |                |                            |                         |         |       |      |  |  |      |  |
| 13               | -          | ntila<br>onfig | tion<br>uration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |         |    | D =<br>E =<br>H = | Gree                                                                            | rized<br>rized<br>penden<br>who  | Dam<br>Dam<br>ent M<br>eel | per w<br>otoriz      | //Pres | ssure   | Reli  | ef & |                  | 21                                                                                                                                         | Corrosion<br>Protection |                        |       |       |      | 21Corrosion<br>ProtectionE = A<br>F = C                                                               |                                |                                                          |                            |                | = All<br>= Co<br>( = Co    | l Coi<br>bat A<br>basta | ils Cor | nd/Ev | ap/F |  |  | ator |  |
|                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |         |    | H =<br>J =        | Hot (<br>Hot (<br>Hot (<br>Hot (                                                | Gas F<br>Gas R                   | Rehea                      | at w/⊦<br>t w/R      | eturn  | n Áir L | .imit |      |                  | 22<br>23                                                                                                                                   |                         | ineer<br>rision        |       | əl    | A    | 5 = Sp<br>1<br>31                                                                                     | ecia                           | al                                                       |                            |                |                            |                         |         |       |      |  |  |      |  |
| 14               | Del        | hum            | nidificati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on     |         |    | M =<br>N =        |                                                                                 | rn Aiı<br>ulatin<br>ulatin<br>ol | r Limi<br>Ig Ho            | t<br>t Gas           | Reh    | eat     |       |      | 24 Cabinet Color |                                                                                                                                            |                         |                        |       |       | 2345 | 2 = Gr<br>5 = Ca<br>5 = Wi<br>5 = Sta                                                                 | ay (<br>arlsb<br>hite<br>ainle | ir Beig<br>STD)<br>ad Ca<br>(STD)<br>ess Ste             | inyon<br>eel E             | (ST            | ,                          |                         |         |       |      |  |  |      |  |
| 15               | Co         | ontro          | ls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |         |    | C =               | A = Power Fail Alarm w/Additional Lockouts<br>C = 24V EMS Relay Kit<br>+ = None |                                  |                            |                      |        |         | outs  |      |                  |                                                                                                                                            |                         |                        |       |       |      |                                                                                                       |                                |                                                          | A = St<br>5 = Cu           | ainle<br>istor | e Gray<br>ess St<br>m Colo | eel -<br>or (Po         | owde    |       | at)  |  |  |      |  |
|                  |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |         |    | A =               | = Eva                                                                           | porat                            | or Fre                     | eeze                 | Sens   | or (E   | FS)   |      |                  | 25                                                                                                                                         | Sou                     | nd At                  | ttenu | ation | 2    | 2 = Co                                                                                                | ompr                           | ressor                                                   | Blan                       | ket            |                            |                         |         |       |      |  |  |      |  |

25

26

27

A = Stainless Steel Fasteners V = Hard Start w/Low Ambient & Fastener/Drain Pan C = Stainless Steel Drain Pan 28 Option D = Stainless Steel Fasteners & Drain Pan + = None Y = Low Ambient w/CCH & FCC + = None 29 Unused \$ = Special Z = Low Ambient w/CCH & EFS + = None 2 = Low Ambient w/FCC & EFS 30 Special Variation \$ = Special Configuration Not Covered by 3 = CCH w/Hot Gas Bypass Model Nomenclature

Sound Attenuation

Security Option

Packaging

Note: Not all options are available with all configurations. Contact your Eubank sales representative for configuration details and feature compatibility.

+ = None

+ = None

+ = None

1 = Crating 2 = Coil Covering

3 = ISPM 15 Compliant

A = Lockable Access Plate/Tamper Proof

\*Used when filter is accessed and changed from inside the interior.

P = Hard Start w/Low Ambient & CCH

**Q** = Hard Start w/Low Ambient & Fan Cycle Control (FCC)

U = Hard Start w/Hot Gas Bypass

R = Crank Case Heater (CCH)

T = Hard Start w/EFS

CCH & EFS

X = Hot Gas Bypass

+ = None

W = Low Ambient w/CCH

1 = Low Ambient w/FCC

C = EFS w/Hot Gas Bypass

N = Hard Start

## HEATING CAPACITY INPUTS AVAILABLE

| MODEL    | Available Heating Inputs              | MODEL    | Available Heating Inputs                |
|----------|---------------------------------------|----------|-----------------------------------------|
| HAH1024A | 45,000 BTUH; 67,500 BTUH; 90,000 BTUH | HAH1042A | 75,000 BTUH; 100,000 BTUH; 125,000 BTUH |
| HAH1030A | 45,000 BTUH; 67,500 BTUH; 90,000 BTUH | HAH1048A | 75,000 BTUH; 100,000 BTUH; 125,000 BTUH |
| HAH1036A | 45,000 BTUH; 67,500 BTUH; 90,000 BTUH | HAH1060A | 75,000 BTUH; 100,000 BTUH; 125,000 BTUH |

16

**Operating Condition** 

## **Certified Efficiency and Capacity Ratings at ANSI/AHRI Standard 390**

| Model Number                       | HAH1024A | HAH1030A | HAH1036A | HAH1042A | HAH1048A | HAH1060A |
|------------------------------------|----------|----------|----------|----------|----------|----------|
| Cooling BTUH <sup>1</sup>          | 24,000   | 30,000   | 35,600   | 42,000   | 44,000   | 55,000   |
| EER <sup>2</sup>                   | 11.00    | 11.00    | 11.00    | 11.00    | 11.00    | 11.00    |
| Rated Air Flow (CFM <sup>3</sup> ) | 800      | 900      | 1,050    | 1,550    | 1,600    | 1,650    |
|                                    |          |          | 1,050    | ,        | 1,000    | 1,000    |

<sup>1</sup>Cooling capacity and efficiency (EER) rated at 95°F (35°C) outdoor and 80°F DB/67° WB (26.5°C DB/19.5°C WB) return air

<sup>2</sup>EER=Energy Efficiency Ratio <sup>3</sup>CFM=Cubic Feet per Minute

Ratings are with no outside air. Performance will be affected by altitude. Ratings are at 230 volts for 208/230 volt units ("A" & "C" models) and 460 volts for "D" models. Operation of units at a different voltage from that of the rating point will affect performance and air flow.

## Sensible Total Heat Ratio @ 95°F (35°C) Outside Air DB

| Model Number                       | HA     | HAH1024A |      |        | HAH1030A |      |        | AH103 | 6A     | HAH1042A |        |   | HAH1048A |        |      | HAH1060A |        |   |  |
|------------------------------------|--------|----------|------|--------|----------|------|--------|-------|--------|----------|--------|---|----------|--------|------|----------|--------|---|--|
| Model Number                       | Α      | С        | D    | Α      | С        | D    | Α      | С     | D      | Α        | С      | D | Α        | С      | D    | Α        | С      | D |  |
| Total Capacity                     | 24,000 |          |      | 30,000 |          |      | 35,600 |       |        | 42,000   |        |   | 4        | 44,000 |      |          | 55,000 |   |  |
| Sensible Heat Ratio                | 0.69   |          | 0.70 |        |          | 0.64 |        | 0.76  |        |          | 0.71   |   |          |        | 0.68 |          |        |   |  |
| Sensible Capacity                  | 16,560 |          | )    | 21,140 |          | :    | 23,045 |       | 32,185 |          | 31,300 |   | )        | 37,595 |      | 5        |        |   |  |
| Rated Air Flow (CFM <sup>1</sup> ) | 800    |          |      | 900    |          |      |        | 1,050 |        |          | 1,550  |   |          | 1,600  |      |          | 1,650  |   |  |

<sup>1</sup>CFM=Cubic Feet per Minute

Sensible heat ratios based upon ANSI/AHRI std. 390 outdoor air conditions of 95°F (35°C) and 80°F Dry Bulb B/67° Wet Bulb (26.5°C DB/19.5°C WB) return air.

## **Cooling Performance (BTUH) at Various Outdoor Temperatures**

| Model                                                                       | OUTDOOR AMBIENT DRY BULB TEMPERATURES |                    |                   |                  |                |                |                   |                    |            |  |  |  |  |  |
|-----------------------------------------------------------------------------|---------------------------------------|--------------------|-------------------|------------------|----------------|----------------|-------------------|--------------------|------------|--|--|--|--|--|
| Number                                                                      | 75°F/24°C                             | 80°F/26.5°C        | 85°F/29°C         | 90°F/32°C        | 95°F/35°C      | 100°F/38°C     | 105°F/40.5°C      | 110°F/43.3°C       | 115°F/46°C |  |  |  |  |  |
| 1024A                                                                       | 27,840                                | 26,880             | 25,920            | 24,960           | 24,000         | 23,040         | 22,080            | 21,120             | 20,640     |  |  |  |  |  |
| 1030A                                                                       | 34,800                                | 33,600             | 32,400            | 31,200           | 30,000         | 28,800         | 27,600            | 26,400             | 25,800     |  |  |  |  |  |
| 1036A                                                                       | 41,295                                | 39,870             | 38,450            | 37,025           | 35,600         | 32,965         | 32,750            | 31,330             | 30,615     |  |  |  |  |  |
| 1042A                                                                       | 48,720                                | 47,040             | 45,360            | 43,680           | 42,000         | 40,320         | 38,640            | 36,960             | 36,120     |  |  |  |  |  |
| 1048A                                                                       | 51,040                                | 49,280             | 47,520            | 45,760           | 44,000         | 42,240         | 40,480            | 38,720             | 37,840     |  |  |  |  |  |
| <b>1060A</b> 63,800 61,600 59,400 57,200 55,000 52,800 50,600 48,400 47,300 |                                       |                    |                   |                  |                |                |                   |                    |            |  |  |  |  |  |
| Based upo                                                                   | on ANSI/AHRI s                        | std. 390 return ai | r conditions of 8 | 0°F Dry Bulb/67° | Wet Bulb (26.5 | °C DB/19.5°C \ | VB) at various ou | itdoor temperature | es.        |  |  |  |  |  |

## Heating Efficiency and Capacity Ratings\*

|                                                                                                                     |                      | _                  |                      |                   | ,                   |              |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|----------------------|-------------------|---------------------|--------------|--|--|--|--|--|--|
| Input                                                                                                               | 45,000 BTUH          | 67,500 BTUH        | 90,000 BTUH          | 75,000 BTUH       | 100,000 BTUH        | 125,000 BTUH |  |  |  |  |  |  |
| Output                                                                                                              | 32,000 BTUH          | 52,000 BTUH        | 69,000 BTUH          | 57,000 BTUH       | 77,000 BTUH         | 96,000 BTUH  |  |  |  |  |  |  |
| Thermal Heating Efficiency                                                                                          | 81.0                 | 81.0               | 81.0                 | 81.0              | 81.0                | 81.0         |  |  |  |  |  |  |
| Temperature Rise Range (°F)                                                                                         | 25 to 55             | 40 to 70           | 50 to 80             | 25 to 55          | 40 to 70            | 50 to 80     |  |  |  |  |  |  |
| Mid Range Air Flow (CFM)                                                                                            | 840                  | 1,000              | 1,220                | 1,650             | 1,70                | 1,750        |  |  |  |  |  |  |
| Acceptable Air Flow Range (CFM) 650 to 1,050 750 to 1,250 1,000 to 1,500 925 to 1,750 1,060 to 1,750 1,150 to 1,750 |                      |                    |                      |                   |                     |              |  |  |  |  |  |  |
| *Heating ratings in accordance with AHRI                                                                            | Efficiency Certifica | tion Program. Temp | erature rise (°F) at | .035" Water Gauge | External Static Pre | ssure.       |  |  |  |  |  |  |

## SCFM @ Various External Static Pressures

| Model Number          | 0.10                    | 0.20                   | 0.25               | 0.30 | 0.40 | 0.50 |
|-----------------------|-------------------------|------------------------|--------------------|------|------|------|
| HAH1024A              | 800                     | 720                    | 680                | 640  |      |      |
| HAH1030A              | 940                     | 860                    | 820                | 780  | 700  |      |
| HAH1036A              | 1,090                   | 1000                   | 970                | 925  | 850  |      |
| HAH1042A              | 1,590                   | 1500                   | 1470               | 1430 | 1350 | 1260 |
| HAH1048A              | 1,680                   | 1600                   | 1560               | 1520 | 1440 | 1350 |
| HAH1060A              | 1,730                   | 1650                   | 1600               | 1570 | 1480 | 1400 |
| Operation of units at | a voltage different fro | m the rating point wil | l affect air flow. |      |      |      |

## Natural Gas Heating Capacity by Altitude (ft.)

|             |           |                 | NAT     | URAL GAS | DERATE C | APACITIES | - Btu/Hr |         |         |         |        |  |
|-------------|-----------|-----------------|---------|----------|----------|-----------|----------|---------|---------|---------|--------|--|
|             |           | Altitude (Feet) |         |          |          |           |          |         |         |         |        |  |
| Rated Input | Sea Level | 1,000           | 2,000   | 3,000    | 4,000    | 5,000     | 6,000    | 7,000   | 8,000   | 9,000   | 10,000 |  |
| 40,500      | 40,500    | 39,204          | 37,908  | 36,612   | 35,640   | 34,992    | 34,182   | 33,696  | 33,048  | 32,643  | 32,076 |  |
| 45,000      | 45,000    | 43,560          | 42,120  | 40,680   | 39,600   | 38,880    | 37,980   | 37,440  | 36,720  | 36,270  | 35,640 |  |
| 60,750      | 60,750    | 58,806          | 56,862  | 54,918   | 53,460   | 52,488    | 51,273   | 50,544  | 49,572  | 48,965  | 48,114 |  |
| 67,500      | 67,500    | 65,340          | 63,180  | 61,020   | 59,400   | 58,320    | 56,970   | 56,160  | 55,080  | 54,405  | 53,460 |  |
| 75,000      | 75,000    | 72,600          | 70,200  | 67,800   | 66,000   | 64,800    | 63,300   | 62,400  | 61,200  | 60,450  | 59,400 |  |
| 81,000      | 81,000    | 78,408          | 75,816  | 73,224   | 71,280   | 69,984    | 68,364   | 67,392  | 66,096  | 65,286  | 64,152 |  |
| 90,000      | 90,000    | 87,120          | 84,240  | 81,360   | 79,200   | 77,760    | 75,960   | 74,880  | 73,440  | 72,540  | 71,280 |  |
| 100,000     | 100,000   | 96,800          | 93,600  | 90,400   | 88,000   | 86,400    | 84,400   | 83,200  | 81,600  | 80,600  | 79,200 |  |
| 112,500     | 112,500   | 108,900         | 105,300 | 101,700  | 99,000   | 97,200    | 94,950   | 93,600  | 91,800  | 90,675  | 89,100 |  |
| 125,000     | 125,000   | 121,000         | 117,000 | 113,000  | 110,000  | 108,000   | 105,500  | 104,000 | 102,000 | 100,750 | 99,000 |  |

## Propane (LP) Heating Capacity by Altitude (ft.)

|             | PROPANE (LP GAS) DERATE CAPACITIES - Btu/Hr |                 |         |         |         |         |         |         |         |         |         |  |  |
|-------------|---------------------------------------------|-----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|
|             |                                             | Altitude (Feet) |         |         |         |         |         |         |         |         |         |  |  |
| Rated Input | Sea Level                                   | 1,000           | 2,000   | 3,000   | 4,000   | 5,000   | 6,000   | 7,000   | 8,000   | 9,000   | 10,000  |  |  |
| 40,500      | 40,500                                      | 39,852          | 39,528  | 39,204  | 38,556  | 38,232  | 37,584  | 36,612  | 35,640  | 34,344  | 32,724  |  |  |
| 45,000      | 45,000                                      | 44,280          | 43,920  | 43,560  | 42,840  | 42,480  | 41,760  | 40,680  | 39,600  | 38,160  | 36,360  |  |  |
| 60,750      | 60,750                                      | 59,778          | 59,292  | 58,806  | 57,834  | 57,348  | 56,376  | 54,918  | 53,460  | 51,516  | 49,086  |  |  |
| 67,500      | 67,500                                      | 66,420          | 65,880  | 65,340  | 64,260  | 63,720  | 62,640  | 61,020  | 59,400  | 57,240  | 54,540  |  |  |
| 75,000      | 75,000                                      | 73,800          | 73,200  | 72,600  | 71,400  | 70,800  | 69,600  | 67,800  | 66,000  | 63,600  | 60,600  |  |  |
| 81,000      | 81,000                                      | 79,704          | 79,056  | 78,408  | 77,112  | 76,464  | 75,168  | 73,224  | 71,280  | 68,688  | 65,448  |  |  |
| 90,000      | 90,000                                      | 88,560          | 87,840  | 87,120  | 85,680  | 84,960  | 83,520  | 81,360  | 79,200  | 76,320  | 72,720  |  |  |
| 100,000     | 100,000                                     | 98,400          | 97,600  | 96,800  | 95,200  | 94,400  | 92,800  | 90,400  | 88,000  | 84,800  | 80,800  |  |  |
| 112,500     | 112,500                                     | 110,700         | 109,800 | 108,900 | 107,100 | 106,200 | 104,400 | 101,700 | 99,000  | 95,400  | 90,900  |  |  |
| 125,000     | 125,000                                     | 123,000         | 122,000 | 121,000 | 119,000 | 118,000 | 116,000 | 113,000 | 110,000 | 106,000 | 101,000 |  |  |

## **Orifice and Altitude Selection Tables for Factory Standard Input Models**

| (Used with   | HMG 22,500 BTUH/ Burner<br>(Used with HAH1024A/1030A/1036A Heat Exchangers) |               |       |          |              |   | HMG 25,000 BTUH/ Burner<br>(Used with HAH1042A, 1048A & 1060A Heat Exchangers) |     |          |           |            |                  |  |
|--------------|-----------------------------------------------------------------------------|---------------|-------|----------|--------------|---|--------------------------------------------------------------------------------|-----|----------|-----------|------------|------------------|--|
|              | Orifice-                                                                    | Natural       | Or    | ifice- I | Propane      |   |                                                                                |     | Orifice- | Natural   | Orifice-   | Orifice- Propane |  |
| Altitude     | Drill Size                                                                  | Dia.          | Drill | Size     | Dia.         |   | Altitude                                                                       | Dri | II Size  | Dia.      | Drill Size | Dia.             |  |
| 0-1999 ft    | #43                                                                         | 0.089         | #5    | 4        | 0.055        |   | 0-1999 ft                                                                      | 2   | 2.30     | 0.0906    | 1.5        | 0.0591           |  |
| 2000-2999 ft | 2.2                                                                         | 0.0866        | 1.3   | 35       | 0.531        |   | 2000-2999 ft                                                                   | ;   | #43      | 0.0890    | #54        | 0.0550           |  |
| 3000-3999 ft | 2.15                                                                        | 0.0846        | #5    | 5        | 0.052        |   | 3000-3999 ft                                                                   | 2   | 2.20     | 0.0866    | 1.35       | 0.0531           |  |
| 4000-4999 ft | 2.1                                                                         | 0.0827        | 1.    | 3        | 0.0511       |   | 4000-4999 ft                                                                   | 2   | 2.15     | 0.0846    | #55        | 0.0520           |  |
| 5000-5999 ft | #45                                                                         | 0.082         | 1.2   | 25       | 0.0492       |   | 5000-5999 ft                                                                   | 2   | 2.10     | 0.0827    | 1.30       | 0.0511           |  |
| 6000-6999 ft | 2.05                                                                        | 0.087         | 1.    | 2        | 0.0472       |   | 6000-6999 ft                                                                   | ;   | #45      | 0.0820    | 1.25       | 0.0492           |  |
| Burner Input | Numbe                                                                       | er of Orifice | s     | Orifi    | ice Size (mm | ) | Orifice Diameter                                                               |     | Orifice  | Size (mm) | Orifice Di | ameter           |  |
| 40,500       |                                                                             | 2             |       |          | 2.10         |   | 0.0826                                                                         |     |          | 2.45      | 0.0        | )964             |  |
| 45,000       |                                                                             | 2             |       |          | 2.15         |   | 0.0846                                                                         |     |          | 2.50      | 0.0        | )984             |  |
| 60,750       |                                                                             | 3             |       |          | 2.20         |   | 0.0866                                                                         |     |          | 2.60      | 0.1        | 024              |  |
| 67,500       |                                                                             | 3             |       |          | 2.25         |   | 0.0885                                                                         |     |          | 2.70      | 0.1        | 063              |  |
| 75,000       |                                                                             | 3             |       |          | 2.30         |   | 0.0905                                                                         |     |          | 2.75      | 0.1        | 082              |  |
| 81,000       |                                                                             | 4             |       |          | 2.35         |   | 0.0925                                                                         |     |          | 2.80      | 0.1        | 1102             |  |
| 90,000       |                                                                             | 4             |       |          | 2.40         |   | 0.0945                                                                         |     |          | 2.90      | 0.1        | 1142             |  |
| 100,000      |                                                                             | 4             |       | L        |              |   |                                                                                |     |          |           | 0.         | · · · · <b>-</b> |  |
| 112,500      |                                                                             | 5             |       |          |              |   |                                                                                |     |          |           |            |                  |  |
| 125,000      |                                                                             | 5             |       |          |              |   |                                                                                |     |          |           |            |                  |  |

| Model                      | COMPRI                   | ESSOR                   |                  | OUTDOO          | R FAN                   | MOTOF  | <b>ર</b> | INDOOR                   | FAN M                   | OTOR    |      | GREEM            | WHEEL            | ® ERV           |
|----------------------------|--------------------------|-------------------------|------------------|-----------------|-------------------------|--------|----------|--------------------------|-------------------------|---------|------|------------------|------------------|-----------------|
| Number                     | VOLTS-HZ-PH              | <b>RLA</b> <sup>1</sup> | LRA <sup>2</sup> | VOLTS-HZ-<br>PH | <b>RPM</b> <sup>3</sup> | FLA⁴   | HP⁵      | VOLTS-HZ-PH              | <b>RPM</b> <sup>3</sup> | FLA⁴    | HP⁵  | OAM <sup>6</sup> | EXM <sup>7</sup> | WD <sup>8</sup> |
| HAH1024AA                  | 208/230-60-1             | 11.9                    | 67.8             | 208/230-60-1    | 1075                    | 3.5    | 1/3      | 208/230-60-1             | 1050                    | 2.8     | 1/3  | 1.0              | 1.0              | 0.2             |
| HAH1030AA                  | 208/230-60-1             | 13.5                    | 82.5             | 208/230-60-1    | 1075                    | 3.5    | 1/3      | 208/230-60-1             | 1050                    | 4.3     | 1/2  | 1.0              | 1.0              | 0.2             |
| HAH1036AA                  | 208/230-60-1             | 14.7                    | 109.0            | 208/230-60-1    | 1075                    | 3.5    | 1/3      | 208/230-60-1             | 1050                    | 4.3     | 1/2  | 1.0              | 1.0              | 0.2             |
| HAH1042AA                  | 208/230-60-1             | 17.3                    | 123.0            | 208/230-60-1    | 1200                    | 5.3    | 1/2      | 208/230-60-1             | 1075                    | 6.0     | 3/4  | 1.0              | 1.0              | 0.2             |
| HAH1048AA                  | 208/230-60-1             | 22.4                    | 126.0            | 208/230-60-1    | 1200                    | 5.3    | 1/2      | 208/230-60-1             | 1075                    | 6.0     | 3/4  | 1.0              | 1.0              | 0.2             |
| HAH1060AA                  | 208/230-60-1             | 23.7                    | 157.0            | 208/230-60-1    | 1200                    | 5.3    | 1/2      | 208/230-60-1             | 1050                    | 6.0     | 3/4  | 1.0              | 1.0              | 0.2             |
| HAH1024AC                  | 208/230-60-3             | 8.3                     | 67.7             | 208/230-60-1    | 1075                    | 3.5    | 1/3      | 208/230-60-1             | 1050                    | 2.8     | 1/3  | 1.0              | 1.0              | 0.2             |
| HAH1030AC                  | 208/230-60-3             | 12.8                    | 97.5             | 208/230-60-1    | 1075                    | 3.5    | 1/3      | 208/230-60-1             | 1050                    | 4.3     | 1/2  | 1.0              | 1.0              | 0.2             |
| HAH1036AC                  | 208/230-60-3             | 12.2                    | 102.8            | 208/230-60-1    | 1075                    | 3.5    | 1/3      | 208/230-60-1             | 1050                    | 4.3     | 1/2  | 1.0              | 1.0              | 0.2             |
| HAH1042AC                  | 208/230-60-3             | 12.8                    | 102.8            | 208/230-60-1    | 1200                    | 5.3    | 1/2      | 208/230-60-1             | 1050                    | 6.0     | 3/4  | 1.0              | 1.0              | 0.2             |
| HAH1048AC                  | 208/230-60-3             | 12.8                    | 120.4            | 208/230-60-1    | 1200                    | 5.3    | 1/2      | 208/230-60-1             | 1050                    | 6.0     | 3/4  | 1.0              | 1.0              | 0.2             |
| HAH1060AC                  | 208/230-60-3             | 16.0                    | 156.4            | 208/230-60-1    | 1200                    | 5.3    | 1/2      | 208/230-60-1             | 1050                    | 6.0     | 3/4  | 1.0              | 1.0              | 0.2             |
| HAH1024AD                  | 460-60-3                 | 5.1                     | 38.1             | 208/230-60-1    | 1075                    | 3.5    | 1/3      | 208/230-60-1             | 1050                    | 2.8     | 1/3  | 1.0              | 1.0              | 0.2             |
| HAH1030AD                  | 460-60-3                 | 5.1                     | 44.3             | 208/230-60-1    | 1075                    | 3.5    | 1/3      | 208/230-60-1             | 1050                    | 4.3     | 1/2  | 1.0              | 1.0              | 0.2             |
| HAH1036AD                  | 460-60-3                 | 5.8                     | 50.0             | 208/230-60-1    | 1075                    | 3.5    | 1/3      | 208/230-60-1             | 1050                    | 4.3     | 1/2  | 1.0              | 1.0              | 0.2             |
| HAH1042AD                  | 460-60-3                 | 5.8                     | 50.0             | 208/230-60-1    | 1200                    | 5.3    | 1/2      | 208/230-60-1             | 1050                    | 6.0     | 3/4  | 1.0              | 1.0              | 0.2             |
| HAH1048AD                  | 460-60-3                 | 6.0                     | 49.4             | 208/230-60-1    | 1200                    | 5.3    | 1/2      | 208/230-60-1             | 1050                    | 6.0     | 3/4  | 1.0              | 1.0              | 0.2             |
| HAH1060AD                  | 460-60-3                 | 7.1                     | 69.0             | 208/230-60-1    | 1200                    | 5.3    | 1/2      | 208/230-60-1             | 1050                    | 6.0     | 3/4  | 1.0              | 1.0              | 0.2             |
| <sup>1</sup> RLA = Rated L | Load Amps <sup>2</sup> L | _RA = L                 | ocked F          | otor Amps       | <sup>3</sup> RPM =      | Revolu | tions p  | er Minute <sup>4</sup> F | LA = Fu                 | II Load | Amps | 5HP =            | = Horsep         | ower            |

## Electrical Characteristics - Compressor, Fan & Blower Motors

RLA = Rated Load Amps <sup>6</sup>OAM = Outside Air Mover

<sup>3</sup>RPM = Revolutions per Minute <sup>8</sup>WD = Wheel Drive Motor

<sup>7</sup>EXM = Exhaust Air Mover

The 460 volt units will have a step down transformer for the 230 volt motors.

## Summary Electrical Ratings (Wire Sizing) - HAH Gas / Electric Air Conditioners

**C** = Economizer

= Motorized Damper w/Pressure Relief & Independent Motorized Damper Control **D** = Motorized Damper w/Pressure Relief **H** = GreenWheel

|              | VOLTACE          | Ventilation Configuration |         |      |     | Gas Heat Capacities (Btu/Hr) |        |         |        |         |        |
|--------------|------------------|---------------------------|---------|------|-----|------------------------------|--------|---------|--------|---------|--------|
| Model Number | VOLTAGE<br>PHASE | C, D, I                   | E, F, N | ŀ    | 1   | 045                          |        | 067     |        | 090     |        |
|              |                  | MCA                       | MFS     | MCA  | MFS | INPUT                        | OUTPUT | INPUT   | OUTPUT | INPUT   | OUTPUT |
| HAH1024AA    | 208-230/1        | 21.2                      | 30      | 23.4 | 35  | 45,000                       | 32,000 | 67,500  | 52,000 | 90,000  | 69,000 |
| HAH1030AA    | 208-230/1        | 24.7                      | 35      | 26.9 | 40  | 45,000                       | 32,000 | 67,500  | 52,000 | 90,000  | 69,000 |
| HAH1036AA    | 208-230/1        | 26.2                      | 40      | 28.4 | 40  | 45,000                       | 32,000 | 67,500  | 52,000 | 90,000  | 69,000 |
| HAH1042AA    | 208-230/1        | 32.9                      | 50      | 35.1 | 50  | 75,000                       | 57,000 | 100,000 | 77,000 | 125,000 | 96,000 |
| HAH1048AA    | 208-230/1        | 39.3                      | 60      | 41.5 | 60  | 75,000                       | 57,000 | 100,000 | 77,000 | 125,000 | 96,000 |
| HAH1060AA    | 208-230/1        | 40.9                      | 60      | 43.1 | 60  | 75,000                       | 57,000 | 100,000 | 77,000 | 125,000 | 96,000 |
| HAH1024AC    | 208-230/3        | 16.7                      | 20      | 18.9 | 25  | 45,000                       | 32,000 | 67,500  | 52,000 | 90,000  | 69,000 |
| HAH1030AC    | 208-230/3        | 23.8                      | 35      | 26   | 35  | 45,000                       | 32,000 | 67,500  | 52,000 | 90,000  | 69,000 |
| HAH1036AC    | 208-230/3        | 23.1                      | 35      | 25.3 | 35  | 45,000                       | 32,000 | 67,500  | 52,000 | 90,000  | 69,000 |
| HAH1042AC    | 208-230/3        | 27.3                      | 40      | 29.5 | 40  | 75,000                       | 57,000 | 100,000 | 77,000 | 125,000 | 96,000 |
| HAH1048AC    | 208-230/3        | 27.3                      | 40      | 29.5 | 40  | 75,000                       | 57,000 | 100,000 | 77,000 | 125,000 | 96,000 |
| HAH1060AC    | 208-230/3        | 31.3                      | 45      | 33.5 | 45  | 75,000                       | 57,000 | 100,000 | 77,000 | 125,000 | 96,000 |
| HAH1024AD    | 460/3            | 9.5                       | 15      | 11.7 | 15  | 45,000                       | 32,000 | 67,500  | 52,000 | 90,000  | 69,000 |
| HAH1030AD    | 460/3            | 10.3                      | 15      | 12.5 | 15  | 45,000                       | 32,000 | 67,500  | 52,000 | 90,000  | 69,000 |
| HAH1036AD    | 460/3            | 11.2                      | 15      | 13.4 | 15  | 45,000                       | 32,000 | 67,500  | 52,000 | 90,000  | 69,000 |
| HAH1042AD    | 460/3            | 12.9                      | 15      | 15.1 | 20  | 75,000                       | 57,000 | 100,000 | 77,000 | 125,000 | 96,000 |
| HAH1048AD    | 460/3            | 13.2                      | 15      | 15.4 | 20  | 75,000                       | 57,000 | 100,000 | 77,000 | 125,000 | 96,000 |
| HAH1060AD    | 460/3            | 14.5                      | 20      | 16.7 | 20  | 75,000                       | 57,000 | 100,000 | 77,000 | 125,000 | 96,000 |

<sup>1</sup>MCA = Minimum Circuit Ampacity (Wiring Size Amps) <sup>4</sup>Top Supply/Center Return <sup>5</sup>Center Supply/Top Return

<sup>2</sup>MFS = Maximum Fuse or HACR Breaker Size

<sup>3</sup>SPPE = Single Point Power Entry

MCA & MFS are calculated at 240 volts on the "A" & "C" models. The 480 volts "D" models are calculated at 480 volts. This chart should only be used as a guideline for estimating conductor size and overcurrent protection. For the requirements of specific units, always refer to the data label on the unit. 1. MFS (Maximum Fuses Size) value listed is the maximum value as per UL 60335-2-40 calculations for MOCP (branch-circuit conductor sizes in this

chart are based on this MOĆP). The actual factory installed Overcurrent Protective Device (Circuit Breaker) in the models may be lower than the maximum UL 60335-2-40 allowable MOCP value, but still above the UL 60335-2-40 minimum calculated value or Minimum Circuit Ampacity (MCA) listed.

2. The end user shall size conductors based on the Single Point Power Entry (SPPE) - Minimum Circuit Ampacity. The service circuit breaker shall not be sized less than the minimum circuit ampacity associated to Single Point Power Entry value provided. The service circuit breaker shall also not be sized greater than the Maximum Fuse size associated to the Single Point Power Entry Value Provided.

3. While this electrical data is presented as a guide, it is important to electrically connect properly sized fuses and conductor wires in accordance with the National Electrical Code and all local codes

## DIMENSIONAL DATA (IN INCHES) - HAH1024A/1030A/1036A

ENGINEERING REVISION "A"



# Shipping Weight

00

7 3/4"

18 1/4"

37 1/4"

| BASIC MODEL                  | HAH1024A     | HAH1030A       | HAH1036A   |
|------------------------------|--------------|----------------|------------|
| SHIP WEIGHT - LBS            | 335          | 415            | 415        |
| SHIP WEIGHT - KG             | 152          | 189            | 189        |
| Note: All overall outside di | mensions are | e given with + | /250" (6mm |

-3/4'' CONDENSER DRAIN HOSE

**Note:** All overall outside dimensions are given with +/- .250" (6mm) tolerance.

| HAH1024A       | HAH1030A | HAH1036A                      |  |  |  |  |
|----------------|----------|-------------------------------|--|--|--|--|
| 30 x 16 x 2    |          |                               |  |  |  |  |
| 762 x 406 x 51 |          |                               |  |  |  |  |
| 80138          |          |                               |  |  |  |  |
|                | HAH1024A | 30 x 16 x 2<br>762 x 406 x 51 |  |  |  |  |

LEFT SIDE VIEW

## DIMENSIONAL DATA (IN INCHES) - HAH1042A/1048A/1060A



BASIC MODELHAH1042AHAH1048AHAH1060ASHIP WEIGHT - LBS555580595SHIP WEIGHT - KG252264270Note: All overall outside dimensions are given with +/- .250"

(6mm) tolerance.

## 457 x 610 x 25 81199

18 x 24 x 1

FILTER SIZE - IN

FILTER SIZE - MM

FILTER PART #

(2 FILTERS/UNIT)

## DIMENSIONAL DATA (IN INCHES) - HAH1042A/1048A/1060A W/GREENWHEEL

Engineering Revision "B"



## **Shipping Weight**

05/2025 Rev.7

| Filter Size | (inches) |
|-------------|----------|
| BASIC MODEL | HAH1042A |

HAH1048A

18 x 24 x 1

457 x 610 x 25

81199

HAH1060A

| BASIC MODEL                                          | HAH1042A                          | HAH1048A | HAH1060A | BASIC MODEL      |
|------------------------------------------------------|-----------------------------------|----------|----------|------------------|
| SHIP WEIGHT - LBS                                    | 555                               | 580      | 595      | FILTER SIZE - IN |
| SHIP WEIGHT - KG                                     | 252                               | 264      | 270      | FILTER SIZE - MM |
| <b>Note:</b> All overall outside di (6mm) tolerance. | FILTER PART #<br>(2 FILTERS/UNIT) |          |          |                  |

12

## Notes

Please consult the Eubank® website at www.EubankWallmount.com for the latest product literature. Detailed dimensional data is available upon request. A complete warranty statement can be found in each product's Installation/Operation Manual, on our website or by contacting Eubank at 229-273-3636. As part of the Eubank continuous improvement program, specifications are subject to change without notice.



P.O. Box 400 • Cordele, GA 31010 156 Seedling Drive • Cordele, GA 31015 Ph: 229-273-3636 • Fax: 229-273-5154 Email: EubankOrders@airxcel.com • Internet: www.EubankWallmount.com



Eubank HAH Air Conditioners w/Gas Heat PDS 05/2025 Rev.7